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A Finite MDP
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In finite MDPs there exists an optimal memoryless strategy.

Even for parity objectives.

Even in stochastic 2-player games.
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MDPs are Everywhere

Stefan Kiefer How to Play in Infinite MDPs 4



MDPs are Everywhere

The standard model for dynamic systems with both
stochastic and nondeterministic behaviour

artificial intelligence and machine learning
control theory
operations research and finance
formal verification
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An Infinite MDP
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def
= supσ Pσ

s (E)

vals(Reach ) = 1

vals(Büchi ) = 1

In infinite MDPs optimal strategies may not exist.
Optimal and ε-optimal strategies may require (infinite) memory.
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How to Play in an MDP = Strategy Complexity

How much memory does a good strategy need?

Answer depends on
objective: reachability, safety, Büchi, parity
ε-optimal strategies or (where they exist) optimal strategies
type of MDP: finite, countably infinite, uncountably infinite

Theorem (ICALP’19)
In countably infinite MDPs with Büchi objective, for ε-optimal
strategies, a step counter plus 1 bit of memory is necessary
and sufficient.

Randomized vs deterministic makes little difference here.
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Memory

Step Counter + k bits

Step Counter = Markov

Finite Memory (k bits = 2k modes)

Memoryless = Positional (MD or MR)

increasing complexity
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Gambler’s Ruin

0 1 2 3 4 · · ·1
0.6 0.6 0.6 0.6

0.40.40.40.40.4

The probability of reaching 0 is
positive everywhere

less than 1 everywhere except in 0

Such situations do not exist in finite Markov chains or MDPs.

Algorithmics of finitely presented MDPs is a different topic.
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From Infinite to Finite Branching

For many objectives, there is a reduction to finite branching:

· · ·
· · ·

· · ·
· · ·

p1 p2

is replaced by

· · ·

· · ·

· · ·

· · ·
p1

1−p1

p2
1−p1

Then a good strategy in the new MDP can be translated back.
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Reachability in Finite MDPs

Plan for next part of the talk:
construct good strategies with little memory
use reachability as example (not our own work)

Lemma (optimal strategies in finite MDPs)

Consider a finite MDP with reachability target T .
There exists a single MD strategy σ that is optimal everywhere.
Formally, Pσ

s (Reach T ) = vals(Reach T ) for every state s.
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Reachability in Countable MDPs

Lemma (ε-optimal strategies need no memory)

Consider a countable MDP with reachability target T .
For every ε > 0 and every state s there exists an MD strategy σ
that is ε-optimal for s, i.e., Pσ

s (Reach T ) ≥ vals(Reach T )− ε.

Proof idea: reduction to the finite case

Fix state s and ε > 0.
Let τ be an ε

2 -optimal strategy (potentially infinite memory):

Pτ
s (Reach T ) ≥ vals(Reach T )− ε

2

Then there is n such that

Pτ
s (Reach T within at most n steps) ≥ vals(Reach T )− ε
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Reachability in Countable MDPs

Lemma (ε-optimal strategies need no memory)

Consider a countable MDP with reachability target T .
For every ε > 0 and every state s there exists an MD strategy σ
that is ε-optimal for s, i.e., Pσ

s (Reach T ) ≥ vals(Reach T )− ε.

Proof idea: reduction to the finite case

s

n
τ does well in alone.

That sub-MDP is finite.

It has an optimal MD strategy!
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Reachability in Countable MDPs

Theorem (Ornstein’69: uniform ε-optimal strategies)

Consider a countable MDP with reachability target T . Let ε > 0.
There is a single MD strategy σ that is ε-optimal everywhere.
Formally, Pσ

s (Reach T ) ≥ vals(Reach T )− ε for every state s.

Proof idea: “plaster” the state space

s1

σ1

s2

s3
σ3

Enumerate all states s1, s2, s3, . . .

Fix σi in a region that is
(A) large enough for si

(B) not too damaging for si+1, . . .
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Lévy’s Zero-One Law

0 1 2 3 4 · · ·1 2/3 2/3 2/3 2/3

1/31/31/31/31/3

E def
= Starting from 0 re-visit 0 exactly once
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Lévy’s Zero-One Law
tail event: independent of any finite prefix (unlike E from before)

For tail events E , by Lévy’s zero-one law:

E and
{

s1s2 · · ·
∣∣∣∣ lim

i→∞
Psi (E) = 1

}
are equal up to a null set.

Theorem (Ornstein’69: uniform a.s. winning strategies)

Consider a countable MDP with reachability target T .
There is a single MD strategy that is almost-surely winning for
all states that have an almost-surely winning strategy.

Proof.

Remove all states that do not have an a.s. winning strategy.

Make T a sink so that Reach T becomes a tail event.

Fix a uniform 1
2 -optimal MD strategy σ (exists as shown before).

“Optimism” to reach T must converge to 1.
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Strategy Complexity of Co-Büchi

Theorem (LICS’17)
Consider a countable finitely branching MDP with co-Büchi
objective.
There is a single MD strategy that is almost-surely winning for
all states that have an almost-surely winning strategy.

false for infinite branching: ... ... ...
0.5

0.5

0.5
0.5

0.5
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Strategy Complexity of Co-Büchi: Safety-First
Strategies

safety-first = in each state minimize prob to ever visit again

If it succeeds, it satisfies co-Büchi.
There is an MD safety-first strategy
that is optimal for safety in every state.

· · ·
1
2

1
2 3

4

1
4 7

8

1
8

1 1 1

We will combine MD strategies for safety and reachability.
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Strategy Complexity of Co-Büchi: Flag Construction

safety level

0

2
3

1

fix safety-first

fix reach
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Strategy Complexity of Parity Objectives (Concur’20)

Safety Reach

{0,1}-Parity {1,2}-Parity

{0,1,2}-Parity {1,2,3}-Parity

{0,1,2,3}-Parity {1,2,3,4}-Parity

Step Counter + 1 Bit

Step Counter MD
Safety Reach

{0,1}-Parity {1,2}-Parity

{0,1,2}-Parity {1,2,3}-Parity

{0,1,2,3}-Parity {1,2,3,4}-Parity

Step Counter MD

Step Counter + 1 Bit

ε-optimal (infinite branching) optimal (infinite branching)

With finite branching, Step Counter becomes MD
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