Büchi Objectives in Countable MDPs

Stefan Kiefer, Richard Mayr, Patrick Totzke Mahsa Shirmohammadi Gamenet workshop, April 2022, Maastricht

Dilemma: Between a rock and a hard place

Following his departure from Circe's island home of Aeaea, Odysseus braces for the many challenges he will encounter on his journey home to his beloved Ithaca

Dilemma: Between a rock and a hard place

2

Reachability

Büchi

🐠 : I make you suffer!

Visit me (i.e., sacrifice to Scylla) over and over!

Büchi

for all $\epsilon > 0$, can 2^{∞} visit 2^{∞} ∞ -times with probability at least $1 - \epsilon$?

 $\frac{1}{2}$ Let $\epsilon = \frac{1}{8}$, let's see how $\frac{7}{8}$ of crew visit $\bigstar \infty$ -times.

How? 1st visit

How? 2nd visit

How? being strategic!

How? Markov Strategy

For countably infinite MDPs and Büchi objective, does there always exist a family of ϵ -optimal Markov strategies?

For countably infinite MDPs and Büchi objective,

does there always exist a family of ϵ -optimal Markov strategies?

Open Problem

Open Problem

Open Problem

7

For countably infinite MDPs and Büchi objective, does there always exist a family of ϵ -optimal Markov strategies?

▷ Is it all about reducing the risk of facing dangerous monsters?

 \triangleright The Markov strategy that, after i-th visit to $\stackrel{\text{\tiny{\sc eq}}}{=}$, picks r_{i+1} attains 0!

▷ The Markov strategy that, after i-th visit to [♀], picks r_{i+1} attains 0! the expected number of visits to Poseidon is at most 1 $< \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 1$

 \triangleright A strategy that picks each r_i for 2^i times achieves Büchi positively!

 \triangleright A strategy that picks each r_i for 2^i times achieves Büchi positively!

Bound the total sacrifice by 1 - c (technical). The probability of revisit $\stackrel{\text{def}}{=}$ after each visit $\geq c$

▷ A strategy that picks each r_i for 2^i times achieves Büchi positively! What is the probability to not visiting Poseidon after *i*-th phase (for large *i*) Π^{∞} $(1 - 1)2^k$ = 0

$$pprox \prod_{k=i}^{\infty} c(1-rac{1}{2^k})^{2^k} = 0$$

(since $\sum_{k=i}^{\infty} 2^k \log(c(1-\frac{1}{2^k}))$ is non-convergent)

For countably infinite MDPs and Büchi objective, does there always exist a family of ϵ -optimal Markov strategies?

▷ it is not all about reducing the risk of facing dangerous monsters

▷ but rather about a good compromise between progress and loss

For countably infinite MDPs and Büchi objective,

does there always exist a family of ϵ -optimal Markov strategies?

▷ it is not all about reducing the risk of facing dangerous monsters

▷ but rather about a good compromise between progress and loss

NO00000!

For countably infinite MDPs and Büchi objective,

does there always exist a family of ϵ -optimal Markov strategies?

N000000!

 \triangleright We build an acyclic MDP where ϵ -optimal strategies cannot be Markov.

 $\mathsf{Markov \ strategy} \ \alpha: {\rm I\!N} \times \mathcal{S} \to \mathcal{S}$

Counter-example

Counter-example

Markov not useful

Claim. For Büchi(G) and no R-edge, all Markov strategies attain only 0!

Claim. For Büchi(G) and no R-edge, all Markov strategies attain only 0!

Expected number of visits to G is $\sum \frac{1}{n} t_n$

 $\sum \frac{1}{n} t_n$ must be divergent!

Claim. For Büchi(G) and no R-edge, all Markov strategies attain only 0!

Expected number of visits to G is $\sum \frac{1}{n}t_n$

The probability of **R** is $\leq \sum \frac{1}{n} d_n$

 $\sum \frac{1}{n} t_n$ must be divergent!

 $\left|\sum \frac{1}{n}d_n\right|$ must be convergent

Claim. For Büchi(G) and no R-edge, all Markov strategies attain only 0!

Expected number of visits to *G* is $\sum \frac{1}{n}t_n$

The probability of **R** is $\leq \sum \frac{1}{n} d_n$

 $\sum \frac{1}{n} t_n$ must be divergent!

 $\sum \frac{1}{n} d_n$ must be convergent

By a careful analysis we shows that $d_n \ge 0.008t_n$ (difficult).

For countably infinite MDPs and Büchi objective,

does there always exist a family of ϵ -optimal Markov strategies?

N000000!

▷ We showed an acyclic MDPs that e-optimal strategies cannot be Markov; however, the value of Büchi(G) is 1 (technical).

For countably infinite MDPs and Büchi objective,

does there always exist a family of ϵ -optimal Markov strategies?

N000000!

Theorem. For Büchi, there are always ϵ -optimal 1-bit Markov strategies.

 $\alpha: \mathbb{N} \times S \times \{0,1\} \rightarrow S$ (necessary and sufficient)

Summary: Strategy complexity

